Get the latest information and insights into the world of brand
Access up-to-date research and reports on the hottest areas of brand
Customer Stories
Hear from the companies that use Latana Brand Tracking to grow legendary brands
Receive more technical, in-depth descriptions of how advanced brand tracking works
Get access to the assets that will help you beat the competition
Brand Bites Series
Insights into brand performance using Latana's brand tracking data
June 10, 2019

What is MRP? And More Frequently Asked Questions

by Korbinian Oswald

What is MRP? Besides the exciting new way to get reliable brand tracking. All your frequently asked questions are answered here.

****Brands can’t get enough of MRP - and we don’t blame them! They are glad to finally have something on the market that provides them with reliable and accurate brand insights. However, they do also find the concept quite tricky to grasp.

A frequent questions asked is "what is MRP?". MRP is advanced data science but, because we don’t know many marketers who double up as data scientists, we wrote a comprehensive guide to MRP tracking. However, we thought it would also be useful to have an explanatory article focused on answering the top questions we receive.

We hope you find the answer to "what is MRP?" here. If not, don’t hesitate to send your question over to We’d be happy to provide an answer.

1. What is MRP?

MRP, or to give it its full name, Multilevel Regression and Poststratification, is a form of advanced data science made popular by Professor Andrew Gelman. Professor Gelman first used it for election forecasts, while Latana used MRP for brand tracking.

MRP creates a model and uses this model to generate estimates for responses in a survey. This model, when given a set of respondent characteristics, can produce an estimate for how a certain respondent would answer a survey question.

Following that, MRP organizes the respondent’s characteristics into groups. By doing so, they can better capture how the variables interact in real life.

Finally, MRP takes weighted averages of all the predictions. This is to ensure that the model has a fair sample of respondents.

MRP builds a model

2. How is MRP different from traditional quota sampling?

Traditional brand trackers are unable to accurately measure opinion in small target audiences. This is because they narrow in on specific respondents within the target audience. Unfortunately, this method of narrowing in results in a large margin of error.

Traditional Quote Sampling

The MRP method does the opposite and achieves precision even in niche audiences. It does this by not restricting itself to the small number of respondents. Instead, it uses information from the entire sample to create a model that can predict brand awareness based on a respondent’s characteristics. Therefore, it can provide reliable insights with higher precision and a smaller margin of error.

3. What is the role of sample size in MRP?

This is another nice thing about MRP, it provides direct information regarding the number of samples needed to get good estimates. The logic is rather simple: we start drawing samples and once our model finds the effects of all characteristics, we are done. This notion of 'convergence' can be tracked dynamically during fieldwork and allows us to achieve much better estimates at much lower sample sizes compared to classical quota sampling.

4. How is significance measured in MRP?

MRP uses a Bayesian model to predict brand awareness based on a respondent’s characteristics. The Bayesian framework gives us an advantage in that we get a measure of the uncertainty of our estimate for free. These Bayesian ‘error bounds’ get smaller the more information we provide to our model e.g. by including prior information from the past or larger sample sizes.


5. Why are some KPIs (e.g. the brand associations) the same for a variety of audiences for any given brand?

A MRP model needs a certain amount of information to find the effects of characteristics in the population. For hard to reach audiences e.g. people who know a rather new brand, it is hard to get enough information during the first sampling waves. However, our model will accumulate information over time and after a couple of months, it will have enough information to tell us the difference in brand associations, even for small brands.

6. Why is MRP particularly good at detecting changes over time?

As mentioned above, MRP is a Bayesian framework which always comes with an estimate of uncertainty in our prediction. This really helps with detecting changes over time since it allows us to make statements like ‘With a probability of 83%, there was a change in brand awareness from between March and April’.

7. Do my brand tracking insights get better over time?

Strong YES! Since the MRP model learns over time, brand KPIs with only a little information at the beginning will improve significantly.

We hope you found the answer to "what is MRP?" here. If not, remember we would be happy to provide an answer over at

More Brand Articles

See how others are building their brands, and get the details you need to follow in their footsteps.

Make your first step
the right one

Learn how you can use Latana to improve your brand marketing and grow faster.


We're here to help brands make better marketing decisions by delivering world-class, scalable insights.

Made with 🧠 and ❤️ in Berlin.

About UsCareersImpressumPress Room
Subscribe to our newsletter

© 2021 Latana Brand Tracking — a Dalia Research GmbH Company. All rights reserved. Various trademarks held by their owners.